Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
Sci Immunol ; 5(54)2020 12 23.
Article in English | MEDLINE | ID: covidwho-2161788

ABSTRACT

Understanding the nature of immunity following mild/asymptomatic infection with SARS-CoV-2 is crucial to controlling the pandemic. We analyzed T cell and neutralizing antibody responses in 136 healthcare workers (HCW) 16-18 weeks after United Kingdom lockdown, 76 of whom had mild/asymptomatic SARS-CoV-2 infection captured by serial sampling. Neutralizing antibodies (nAb) were present in 89% of previously infected HCW. T cell responses tended to be lower following asymptomatic infection than in those reporting case-definition symptoms of COVID-19, while nAb titers were maintained irrespective of symptoms. T cell and antibody responses were sometimes discordant. Eleven percent lacked nAb and had undetectable T cell responses to spike protein but had T cells reactive with other SARS-CoV-2 antigens. Our findings suggest that the majority of individuals with mild or asymptomatic SARS-CoV-2 infection carry nAb complemented by multispecific T cell responses at 16-18 weeks after mild or asymptomatic SARS-CoV-2 infection.


Subject(s)
Antibodies, Neutralizing/immunology , Asymptomatic Infections , COVID-19/immunology , T-Lymphocytes/immunology , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , Antibodies, Viral/immunology , Case-Control Studies , Cross-Sectional Studies , Humans , SARS-CoV-2/immunology
2.
J Pathol ; 257(2): 198-217, 2022 06.
Article in English | MEDLINE | ID: covidwho-1664431

ABSTRACT

SARS-CoV-2, the causative agent of COVID-19, typically manifests as a respiratory illness, although extrapulmonary involvement, such as in the gastrointestinal tract and nervous system, as well as frequent thrombotic events, are increasingly recognised. How this maps onto SARS-CoV-2 organ tropism at the histological level, however, remains unclear. Here, we perform a comprehensive validation of a monoclonal antibody against the SARS-CoV-2 nucleocapsid protein (NP) followed by systematic multisystem organ immunohistochemistry analysis of the viral cellular tropism in tissue from 36 patients, 16 postmortem cases and 16 biopsies with polymerase chain reaction (PCR)-confirmed SARS-CoV-2 status from the peaks of the pandemic in 2020 and four pre-COVID postmortem controls. SARS-CoV-2 anti-NP staining in the postmortem cases revealed broad multiorgan involvement of the respiratory, digestive, haematopoietic, genitourinary and nervous systems, with a typical pattern of staining characterised by punctate paranuclear and apical cytoplasmic labelling. The average time from symptom onset to time of death was shorter in positively versus negatively stained postmortem cases (mean = 10.3 days versus mean = 20.3 days, p = 0.0416, with no cases showing definitive staining if the interval exceeded 15 days). One striking finding was the widespread presence of SARS-CoV-2 NP in neurons of the myenteric plexus, a site of high ACE2 expression, the entry receptor for SARS-CoV-2, and one of the earliest affected cells in Parkinson's disease. In the bone marrow, we observed viral SARS-CoV-2 NP within megakaryocytes, key cells in platelet production and thrombus formation. In 15 tracheal biopsies performed in patients requiring ventilation, there was a near complete concordance between immunohistochemistry and PCR swab results. Going forward, our findings have relevance to correlating clinical symptoms with the organ tropism of SARS-CoV-2 in contemporary cases as well as providing insights into potential long-term complications of COVID-19. © 2022 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Megakaryocytes , Myenteric Plexus , Neurons
3.
Nature ; 601(7891): 110-117, 2022 01.
Article in English | MEDLINE | ID: covidwho-1510600

ABSTRACT

Individuals with potential exposure to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) do not necessarily develop PCR or antibody positivity, suggesting that some individuals may clear subclinical infection before seroconversion. T cells can contribute to the rapid clearance of SARS-CoV-2 and other coronavirus infections1-3. Here we hypothesize that pre-existing memory T cell responses, with cross-protective potential against SARS-CoV-2 (refs. 4-11), would expand in vivo to support rapid viral control, aborting infection. We measured SARS-CoV-2-reactive T cells, including those against the early transcribed replication-transcription complex (RTC)12,13, in intensively monitored healthcare workers (HCWs) who tested repeatedly negative according to PCR, antibody binding and neutralization assays (seronegative HCWs (SN-HCWs)). SN-HCWs had stronger, more multispecific memory T cells compared with a cohort of unexposed individuals from before the pandemic (prepandemic cohort), and these cells were more frequently directed against the RTC than the structural-protein-dominated responses observed after detectable infection (matched concurrent cohort). SN-HCWs with the strongest RTC-specific T cells had an increase in IFI27, a robust early innate signature of SARS-CoV-2 (ref. 14), suggesting abortive infection. RNA polymerase within RTC was the largest region of high sequence conservation across human seasonal coronaviruses (HCoV) and SARS-CoV-2 clades. RNA polymerase was preferentially targeted (among the regions tested) by T cells from prepandemic cohorts and SN-HCWs. RTC-epitope-specific T cells that cross-recognized HCoV variants were identified in SN-HCWs. Enriched pre-existing RNA-polymerase-specific T cells expanded in vivo to preferentially accumulate in the memory response after putative abortive compared to overt SARS-CoV-2 infection. Our data highlight RTC-specific T cells as targets for vaccines against endemic and emerging Coronaviridae.


Subject(s)
Asymptomatic Infections , COVID-19/immunology , COVID-19/virology , DNA-Directed RNA Polymerases/immunology , Memory T Cells/immunology , SARS-CoV-2/immunology , Seroconversion , Cell Proliferation , Cohort Studies , DNA-Directed RNA Polymerases/metabolism , Evolution, Molecular , Female , Health Personnel , Humans , Male , Membrane Proteins/immunology , Memory T Cells/cytology , Multienzyme Complexes/immunology , SARS-CoV-2/enzymology , SARS-CoV-2/growth & development , Transcription, Genetic/immunology
4.
J Clin Pathol ; 75(4): 288, 2022 Apr.
Article in English | MEDLINE | ID: covidwho-1406666
5.
Clin Med (Lond) ; 20(6): e279, 2020 11.
Article in English | MEDLINE | ID: covidwho-1384011
6.
Diagn Histopathol (Oxf) ; 27(8): 317-324, 2021 Aug.
Article in English | MEDLINE | ID: covidwho-1233548

ABSTRACT

COVID-19 is currently a major cause of morbidity and mortality in adults throughout the world. Given the high infection rate, it is increasingly likely that histopathologists will encounter this disease during their practice. Although COVID-19 is increasingly recognized as a multi-system disease, the lungs and, to a lesser degree, the heart remain the major sites of pathology. This article aims to acquaint the general histopathologist with the main pathological findings in the lungs and heart of adults with COVID-19. It highlights the need for clinicopathological correlation with a discussion of the cardiopulmonary clinical features in COVID-19 and relates those to the pathological findings. In the lungs, diffuse alveolar damage is emphasized with its variety of morphological appearances over time. It concludes with a discussion of the main techniques available to identify the virus in fixed tissues and their potential limitations related specifically to the heart and lungs.

7.
EBioMedicine ; 65: 103259, 2021 Mar.
Article in English | MEDLINE | ID: covidwho-1116568

ABSTRACT

BACKGROUND: SARS-CoV-2 serology is used to identify prior infection at individual and at population level. Extended longitudinal studies with multi-timepoint sampling to evaluate dynamic changes in antibody levels are required to identify the time horizon in which these applications of serology are valid, and to explore the longevity of protective humoral immunity. METHODS: Healthcare workers were recruited to a prospective cohort study from the first SARS-CoV-2 epidemic peak in London, undergoing weekly symptom screen, viral PCR and blood sampling over 16-21 weeks. Serological analysis (n =12,990) was performed using semi-quantitative Euroimmun IgG to viral spike S1 domain and Roche total antibody to viral nucleocapsid protein (NP) assays. Comparisons were made to pseudovirus neutralizing antibody measurements. FINDINGS: A total of 157/729 (21.5%) participants developed positive SARS-CoV-2 serology by one or other assay, of whom 31.0% were asymptomatic and there were no deaths. Peak Euroimmun anti-S1 and Roche anti-NP measurements correlated (r = 0.57, p<0.0001) but only anti-S1 measurements correlated with near-contemporary pseudovirus neutralising antibody titres (measured at 16-18 weeks, r = 0.57, p<0.0001). By 21 weeks' follow-up, 31/143 (21.7%) anti-S1 and 6/150 (4.0%) anti-NP measurements reverted to negative. Mathematical modelling revealed faster clearance of anti-S1 compared to anti-NP (median half-life of 2.5 weeks versus 4.0 weeks), earlier transition to lower levels of antibody production (median of 8 versus 13 weeks), and greater reductions in relative antibody production rate after the transition (median of 35% versus 50%). INTERPRETATION: Mild SARS-CoV-2 infection is associated with heterogeneous serological responses in Euroimmun anti-S1 and Roche anti-NP assays. Anti-S1 responses showed faster rates of clearance, more rapid transition from high to low level production rate and greater reduction in production rate after this transition. In mild infection, anti-S1 serology alone may underestimate incident infections. The mechanisms that underpin faster clearance and lower rates of sustained anti-S1 production may impact on the longevity of humoral immunity. FUNDING: Charitable donations via Barts Charity, Wellcome Trust, NIHR.


Subject(s)
Antibodies, Neutralizing/blood , Antibodies, Viral/blood , COVID-19/blood , Coronavirus Nucleocapsid Proteins/immunology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/diagnosis , Health Personnel/statistics & numerical data , Humans , Immunoglobulin A/blood , Immunoglobulin G/blood , Phosphoproteins/immunology , Protein Domains/immunology
8.
Wellcome Open Res ; 5: 179, 2020.
Article in English | MEDLINE | ID: covidwho-1068028

ABSTRACT

Background: Most biomedical research has focused on sampling COVID-19 patients presenting to hospital with advanced disease, with less focus on the asymptomatic or paucisymptomatic. We established a bioresource with serial sampling of health care workers (HCWs) designed to obtain samples before and during mainly mild disease, with follow-up sampling to evaluate the quality and duration of immune memory. Methods: We conducted a prospective study on HCWs from three hospital sites in London, initially at a single centre (recruited just prior to first peak community transmission in London), but then extended to multiple sites 3 weeks later (recruitment still ongoing, target n=1,000). Asymptomatic participants attending work complete a health questionnaire, and provide a nasal swab (for SARS-CoV-2 RNA by RT-PCR tests) and blood samples (mononuclear cells, serum, plasma, RNA and DNA are biobanked) at 16 weekly study visits, and at 6 and 12 months. Results: Preliminary baseline results for the first 731 HCWs (400 single-centre, 331 multicentre extension) are presented. Mean age was 38±11 years; 67% are female, 31% nurses, 20% doctors, and 19% work in intensive care units. COVID-19-associated risk factors were: 37% black, Asian or minority ethnicities; 18% smokers; 13% obesity; 11% asthma; 7% hypertension and 2% diabetes mellitus. At baseline, 41% reported symptoms in the preceding 2 weeks. Preliminary test results from the initial cohort (n=400) are available: PCR at baseline for SARS-CoV-2 was positive in 28 of 396 (7.1%, 95% CI 4.9-10.0%) and 15 of 385 (3.9%, 2.4-6.3%) had circulating IgG antibodies. Conclusions: This COVID-19 bioresource established just before the peak of infections in the UK will provide longitudinal assessments of incident infection and immune responses in HCWs through the natural time course of disease and convalescence. The samples and data from this bioresource are available to academic collaborators by application  https://covid-consortium.com/application-for-samples/.

10.
Br J Clin Pharmacol ; 87(3): 845-857, 2021 03.
Article in English | MEDLINE | ID: covidwho-740227

ABSTRACT

Host immunity is required to clear SARS-CoV-2, and inability to clear the virus because of host or pathogen factors renders those infected at risk of poor outcomes. Estimates of those who are able to clear the virus with asymptomatic or paucisymptomatic COVID-19 remain unclear, and dependent on widespread testing. However, evidence is emerging that in severe cases, pathological mechanisms of hyperinflammation and coagulopathy ensue, the former supported by results from the RECOVERY trial demonstrating a reduction in mortality with dexamethasone in advanced COVID-19. It remains unclear whether these pathogenic pathways are secondary to a failure to clear the virus because of maladaptive immune responses or if these are sequential COVID-19 defining illnesses. Understanding the pathophysiological mechanisms underpinning these cascades is essential to formulating rationale therapeutic approaches beyond the use of dexamethasone. Here, we review the pathophysiology thought to underlie COVID-19 with clinical correlates and the current therapeutic approaches being investigated.


Subject(s)
COVID-19 Drug Treatment , Dexamethasone/therapeutic use , Fibrinolytic Agents/therapeutic use , Immunologic Factors/therapeutic use , Antiviral Agents/therapeutic use , COVID-19/immunology , COVID-19/mortality , Humans , Randomized Controlled Trials as Topic
SELECTION OF CITATIONS
SEARCH DETAIL